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Large-eddy simulation is used to investigate fully developed turbulent flow in a neutral
channel wherein the lower wall is sinusoidal. The numerical results are compared with
experimental observations for wave slopes ranging from 0 to 0.628. Particular emphasis
is placed on the separated flow induced by a large-amplitude wave. A detailed
comparison with the data of Buckles, Hanratty & Adrian (1984) shows generally
good agreement. Large-eddy simulation surface pressures are integrated to calculate
form drag as a function of wave slope. Drag is found to increase quadratically
with slope for small-amplitude waves, with a somewhat slower increase for larger
amplitudes. However, comparison with experimental measurements is confounded
by uncertainties with the values reported in the literature. An interesting feature
characteristic of all wavy-surface simulations is an increase in transverse velocity
fluctuations on the wave upslope. Although the precise mechanism responsible is
not known, analysis shows it to be associated with temporally persistent vortex-
like structures localized near the surface. The magnitude of the fluctuation increase
appears to scale quadratically with slope for small-amplitude waves, in contrast to
the streamwise fluctuations, which increase linearly.

1. Introduction
The use of large-eddy simulations to model complex flow configurations is becoming

increasingly common. One of the earliest applications to go beyond the horizontally
homogeneous channel case was in modelling turbulent convective flow over sinusoidal
terrain, e.g. Krettenauer & Schumann (1992); Walko, Cotton & Pielke (1992); and
Dörnbrack & Schumann (1993). Simulations over flat homogeneous terrain have
demonstrated that this type of flow is particularly amenable to large-eddy simulation
(LES) since the dominant thermally-driven eddies are on the scale of the mixed-layer
height (or channel depth) and so are typically well-resolved (Mason 1989; Schmidt &
Schumann 1989). While LES has shown that wavy terrain can modify the large-scale
flow in the convective boundary layer, horizontally averaged profiles are not very
different from the flat case, even in the presence of a mean wind. This is because
strong vertical mixing tends to reduce the velocity shears caused by even large surface
slopes. However, the effects of terrain on more neutrally stable flow are likely to be
much more dramatic since even relatively small slopes can induce significant variations
in the mean flow and turbulence structure (Taylor 1977; Sykes 1980; Belcher & Hunt
1998).

This research effort is oriented towards atmospheric flow over terrain which, while
idealized, is nonetheless realistic in terms of slope and wavelength. However, be-
fore making this extension, it is desirable to verify the LES against laboratory
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measurements. Gong, Taylor & Dörnbrack (1996) recently presented experimental
observations and LES calculations for wind-tunnel flow over sinusoidal terrain with
a growing boundary layer. However, the flow is complicated by the non-uniformity of
the boundary layer and may also be influenced by the lateral walls of the wind tunnel.
Hanratty and coworkers have presented an extensive set of measurements of channel
flow over wavy surfaces (e.g. Zilker, Cook & Hanratty 1977; Zilker & Hanratty 1979;
Buckles, Hanratty & Adrian 1984 (hereinafter referred to as BHA), 1986; Frederick
& Hanratty 1988; Kuzan, Hanratty & Adrian 1989; Hudson, Dykhno & Hanratty
1996). We will focus in particular on the data of BHA, who present extensive mea-
surements of the mean and fluctuating velocity for turbulent channel flow over an
aerodynamically smooth, large-amplitude sinusoidal surface. However, we will also
consider smaller-amplitude waves in order to establish confidence in the model as well
as examine the effects of varying wave slope. Although the data we are comparing
with are all for smooth walls and hence Reynolds-number dependent, the Reynolds
numbers are high enough so that the flows are fully turbulent. Nonetheless, the
LES model does account for finite-Reynolds-number effects since a no-slip velocity
boundary condition is used.

Analytic flow studies (e.g. Sykes 1980; Hunt, Leibovich & Richards 1988; Belcher,
Newley & Hunt 1993), have shown that terrain-induced turbulence modifications are
subject to rapid variation close to the surface. The equilibrium log-layer relations are
valid only very near the boundary, and an inner layer develops in which advection
and distortion of the turbulence are important, with a vertical scale much smaller than
the horizontal wavelength. The inner layer is typically about 5% of the wavelength,
making explicit resolution of eddies in this region very difficult. These difficulties
also affect the ability to represent surface forces correctly, since the forces are closely
coupled to the details of the flow near the boundary. However, the total drag force is
also related to the total energy dissipation in the flow, and we expect wavy surfaces,
especially in the case of large-scale separation, to generate resolvable eddies well
suited to modelling by LES.

Direct numerical simulations of channel flow over wavy surfaces (e.g. Maaß &
Schumann 1994, 1996; De Angelis, Lombardi & Banerjee 1997; Cherukat et al.
1998) have successfully reproduced many of the laboratory observations for moderate
Reynolds number, while also providing great detail on the flow structure. For instance,
both De Angelis et al. and Cherukat et al. note increased transverse fluctuations on
the wave upslope, which we have observed for a range of wave amplitudes. However,
the application of DNS is limited since resolution requirements become prohibitive
for high-Reynolds-number flow.

The paper is organized as follows. First, the LES model is described, with particular
emphasis on features relevant to finite-Reynolds-number flow over wavy surfaces,
since the infinite Reynolds number, Cartesian version of the model has been described
elsewhere. The numerical methods and boundary conditions are then briefly outlined.
After summarizing the basic flow configurations and parameters, model results are
compared with a number of experiments. We first present results from flat-channel
calculations and then proceed to examine a small-amplitude wavy-surface case. Next,
LES results are compared in detail with the data of BHA for separated flow over a
large-amplitude wave. A limited comparison between flows over waves with different
amplitudes is then made; the dependence of form drag on wave slope is examined in
particular. Finally, the interesting feature of increased transverse turbulent fluctuations
on the wave upslope is investigated.
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2. LES model
2.1. Model equations

The basic LES model has previously been applied to buoyancy-driven turbulence
(Sykes & Henn 1989; Henn & Sykes 1992) and a neutral boundary layer (Sykes &
Henn 1992). For the current application, the terrain-following coordinate transform-
ation of Clark (1977) is used for accurate representation of the surface bound-
ary conditions. The equations of motions are based on the filtered Navier–Stokes
equations and follow the approach of Moin & Kim (1982) in explicitly including
viscosity so that a no-slip boundary may be imposed. The resolved-scale Cartesian
velocity components ui = (u, v, w) are solved as functions of transformed coordinates
x̃i = (x̃, ỹ, z̃), defined in terms of Cartesian coordinates xi = (x, y, z) by x̃ = x, ỹ = y
and z̃ = η(x, y, z). The transformation

η = (z − h)/J, (1)

where J = 1− h/H , maps the domain between the lower wavy surface at z = h and
the upper flat channel wall at z = H onto a rectangular domain. The lower surface
is a two-dimensional infinite wavetrain defined by h(x, y) = a[1 + cos(2πx/λ)], with
wavelength λ and amplitude a.

Cartesian derivatives for an arbitrary scalar field φ are given in terms of the
transformed coordinates as

∂

∂xi
φ =

∂x̃j

∂xi

∂

∂x̃j
φ ≡ Gji ∂

∂x̃j
φ, (2)

where the summation convention is assumed. Note that J−1 = det(Gij). Since a fluid
of constant density ρ is considered here, it is convenient to define V = ρJ . Then,
following Krettenauer & Schumann (1992), the model equations are given concisely
as

∂
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)
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where p is the dynamic pressure, τij is the subgrid stress tensor, ν is the kinematic
viscosity and Px is a uniform pressure gradient in the x-direction that drives the flow.
It should be noted that this is not intended as a low-Reynolds-number model; the
viscous term is only important in a thin layer near the wall and is included principally
to impose the no-slip boundary condition.

The subgrid turbulence model uses a turbulent kinetic energy transport equation
based on the second-order closure model of Lewellen (1977). The subgrid velocity
variance, q2, is obtained from the conservation equation
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))− 2bV
q3

Λ
, (5)

where Fi is the subgrid flux, Λ is the subgrid turbulence lengthscale (or filter scale)
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and the velocity deformation tensor is given by

VDij =
∂

∂x̃k

(
VGkjui + VGkiuj

)
. (6)

The first term on the right-hand side of (5) represents subgrid turbulence production
due to gradients in the resolved velocity field, the next two terms represents transport
due to diffusive fluxes and the last term models the dissipation. The subgrid fluxes
are given by

Vτij = SmqΛVDij , (7)

VFi = SHqΛ
∂

∂x̃j

(
VGjiq2

)
. (8)

The various empirical model constants are taken from Lewellen (1977) so that
b = 0.125, Sm = 1

4
and SH = 1

3
.

Finally, the subgrid lengthscale is specified algebraically by

1

Λ2
=

1

l2
+

1

Λ2
max

, (9)

where l is a function of distance normal to the nearer of the top or lower bounding
surfaces and Λmax is problem dependent. The philosophy of Mason & Callen (1986) is
followed in setting the subgrid filter scale independent of the numerical grid, subject
to the requirement that the resulting large-scale eddies are adequately resolved.
While, in principle, one could use an arbitrarily fine grid for a fixed filter scale, in
practice, the idea is to reduce the lengthscale more or less in proportion with the
grid size so that smaller-scale turbulent eddies will be resolved. The wall function l is
simply set proportional to normal distance in infinite-Reynolds number applications.
However, it was found that the lengthscale must be damped more rapidly as the
wall is approached when imposing a zero-slip boundary condition for finite-Reynolds
number flow. Therefore, following Moin & Kim (1982), we use the Van Driest
exponential damping function such that

l = αn(1− exp(−n+/A+)), (10)

where n is distance normal to the nearest wall, α = 0.65 from Lewellen (1977),

A+ = 25, n+ = nτ
1/2
0 /ν and τ0 is the local instantaneous wall shear stress.

2.2. Numerical implementation

The numerical scheme is similar to that used in the Cartesian model (Sykes & Henn
1989), although the coordinate transformation introduces a number of new terms
and other complications; details of the implementation generally follow Clark (1977).
The model uses a standard second-order accurate, finite-difference energy-conserving
scheme on a staggered grid with leapfrog time differencing. A small amount of
smoothing (1%) is used to couple the two time levels and prevent the time-splitting
instability. Diffusion terms are modelled using central differencing with the DuFort–
Frankel approximation to provide stable integration. The DuFort–Frankel scheme
is second-order accurate and consistent with the advection–diffusion equation if
d = K(∆t/∆z2) is small, where K is the total diffusivity. At the wall, K = ν and d
is less than 0.05 for all cases. In fact, d is generally less than 0.01 over most of the
domain since the timestep, which is limited by the vertical Courant condition near
the wall, is small. The grid spacing is uniform horizontally but varies vertically, with
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fine resolution at the walls expanding to a section of uniform spacing comparable to
the horizontal spacing.

The elliptic equation for the pressure field is obtained by applying the finite-
difference approximation of the divergence operator (3) to the partially advanced
velocity fields, i.e. including all terms from (4) except the pressure gradients. The
pressure field is then computed from the resulting equation such that zero divergence
of the velocity field is maintained. However, the non-orthogonal coordinate trans-
formation makes the equation non-separable, so the direct solver of the Cartesian
model must be used in an iterative scheme, as in Clark (1977) and Krettenauer &
Schumann (1992). The pressure equation is written in the form

L0(p) = N(p) + D(ũi), (11)

where L0 is the finite-difference representation of the Cartesian Laplace operator
(i.e. the case with h = 0), N represents the terms of the operator resulting from the
coordinate transformation and D is the numerical divergence operator, here applied
to the partially advanced velocity fields (denoted by a tilde). The solution is obtained
using the direct Cartesian solver for each iteration of the system

L0(p
(n+1)) = N(p(n)) + D(ũi), (12)

where the superscripts denote iteration and the previous timestep value is used as
the initial guess p(0). The iteration continues until the maximum change in p is less
than 10−5 times the maximum value of p in the domain. The rate of convergence
depends on the wave slope since N is generally proportional to the square of the
slope. For the maximum slope of 0.628 considered here, convergence requires five to
seven iterations.

2.3. Boundary conditions

Periodic boundary conditions are imposed at all lateral boundaries. A no-slip con-
dition is imposed on the lower wall by setting u and v below the surface equal and
opposite to the values on the first level above the surface. For some of the flows
described in the next section, a no-slip condition is also imposed on the upper wall.
However, since the flow details at the top of the channel are generally not of primary
interest, the upper boundary is usually treated as a rough wall. In this case, a log-
arithmic profile is used to relate the top wall shear stress to the tangential velocity
half a grid length below the wall.

The momentum fluxes at the lower surface are determined by the no-slip condition
at the wall and by assuming flow parallel to the wall at the first grid level. The total
momentum flux is given by

τ0 = ν|usi |z−1
n , (13)

where usi = (us, vs, hxus+hyvs) is the velocity vector located half a grid length above the
lower surface, hx and hy are the surface slopes in the x- and y-directions, respectively,
and zn is the normal distance to the wall. Note that for the purpose of setting the
wall stress, w is defined in (13) so that usi is parallel to the lower surface. The normal
distance is related to the transformed vertical grid spacing at the wall, ∆z̃0, by,

zn =
J∆z̃0

2(1 + h2
x + h2

y)
1/2
. (14)

In a local coordinate system defined by the unit surface normal n̂i and the unit vector
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in the direction of the tangential velocity, ûi = usi |usi |−1, the full stress tensor at the
surface is

τ ′s = τ0

 0 0 1
0 0 0
1 0 0

 , (15)

where the prime denotes the local coordinate system. The stress tensor (15) must
be rotated into the global Cartesian frame since the momentum equations use the
Cartesian velocity components. Using the fact that hy = 0, this rotation results in

τ s =
ν

J∆z̃0/2

 −2hxus −hxvs (1− h2
x)us−hxvs 0 vs

(1− h2
x)us vs 2hxus

 (16)

which defines the lower boundary condition for the total stress tensor, τij + νDij .
The pressure boundary condition is set to ensure consistency between the numerical

discretizations of the momentum equation (4) and the pressure source term N from
(11) when imposing the constraint of zero normal flow at the wall. By requiring that
both ui and ũi (the partially advanced velocity used in (11)) satisfy this constraint, we
obtain a numerical expression of the form δzp+ f(pz) = 0 for z̃ = 0, where δz denotes
a vertical finite difference and f is a function of the vertically averaged pressure pz .
The numerical expression for the pressure source term is given by N = δzf+NH (δzp

z),
where NH is a horizontal difference operator. Thus, setting δzp = 0 and f = 0 at
z̃ = 0 provides all the necessary boundary conditions for the pressure solver while
maintaining consistency with the zero normal flow condition.

3. Flow parameters
The principal focus of this investigation is the configuration of BHA, i.e. channel

flow over an infinite array of two-dimensional large-amplitude sinusoidal waves.
However, since this LES model had not previously been applied to flows at finite-
Reynolds numbers, a flat channel with Re ≈ 12 000 was first simulated to test
model performance. Then, to test the model with the transformed equations, channel
flow over a small-amplitude wavy surface was calculated. Additionally, intermediate
wave amplitude configurations were examined as part of a limited investigation into
variations of surface pressure, drag, turbulence intensity and flow separation with
wave slope.

3.1. Numerical experiments

The basic flow geometry is illustrated in figure 1 and all configurations are summarized
in table 1. For the wavy surface cases, the standard computational domain contains
two wavelengths; test calculations with a single wave (not shown) gave quite different
results whereas calculations with four waves were very similar to the standard domain
results. This can be seen from the values for case BHA1L given in table 3 (form drag)
and table 4 (variance perturbations) which agree within 10 % of the standard domain
case BHA1. Note also that grid resolutions for the 2a/λ = 0, 0.031 and 0.2 cases are
varied along with the subgrid lengthscale to demonstrate numerical convergence.

The vertical resolution requirements are fairly stringent near the wall, requiring
that the lowest grid level be in the viscous sublayer below z+ ≈ 10 (using local wall
scaling). Using the experimental results to estimate the maximum mean wall shear
stress, it was determined that grid levels below z̃/H ≈ 0.005 and 0.01 were required
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Figure 1. Schematic diagram of channel flow over a periodic wavy lower wall. The maximum
channel depth is H; the LES computational domain has a length L. For most cases with a wavy
surface, L is twice the wavelength λ, the transverse computational width, W , is equal to λ and
λ ≈ H . For the flat channel cases, L = 2H and W = H .

Case L W λ 2a/λ Grid size ∆z̃min ∆z̃max Λmax Re

F 2 1 ∞ 0 48× 48× 90 0.002 0.02 0.005 11 810
FR 2 1 ∞ 0 80× 80× 90 0.002 0.02 0.003 11 820
S1 2 1 1 0.031 48× 48× 91 0.002 0.02 0.005 6 560
S1R 2 1 1 0.031 80× 80× 102 0.002 0.02 0.003 5 720
S2 1.984 0.992 0.992 0.050 48× 48× 71 0.00124 0.0248 0.00620 11 050
S3 2.034 1.017 1.017 0.100 48× 48× 71 0.00127 0.0254 0.00636 10 580
S4 2 1 1 0.125 48× 48× 67 0.0025 0.025 0.00625 10 800
BHA1 2.143 1.072 1.072 0.200 48× 48× 71 0.00134 0.0268 0.00670 10 600
BHA1R 2.143 1.072 1.072 0.200 80× 80× 99 0.00134 0.0167 0.00402 10 450
BHA1L 4.286 1.072 1.072 0.200 96× 48× 71 0.00134 0.0268 0.00670 12 000
BHA2 2.143 1.072 1.072 0.200 48× 48× 71 0.00134 0.0268 0.00670 5 990
BHA3 2.143 1.072 1.072 0.200 48× 48× 71 0.00134 0.0268 0.00670 20 060

Table 1. Non-dimensional parameters for the various LES calculations, listed in order of increasing
slope. L, W , and λ are the streamwise length (x-direction), transverse width (y-direction) and
wavelength, respectively; ∆z̃min and ∆z̃max are the minimum (at the lower wall) and maximum
vertical transformed grid sizes, respectively; Λmax is the maximum subgrid filter lengthscale; and the
Reynolds number is defined by Re = Ubδ/ν, where δ is the channel mean half-height and Ub is the
bulk velocity, defined in the text. All lengths are normalized by the mean channel depth, H − a. The
computational grid sizes are given as the number of grid points in the streamwise, transverse and
vertical directions, respectively.

for the BHA and flat configurations, respectively. The minimum vertical grid spacings
shown in table 1 are less than these estimates to accommodate fluctuations in local
wall stresses resulting from very thin viscous shear layers.

All cases were initialized from previous fully turbulent runs and continued until an
approximate equilibrium between the imposed constant streamwise pressure gradient
and the wall stresses, including pressure forces, was attained. The statistics for all
cases presented below are from periods after this equilibrium was reached. Averaging
was done over a time of 30H/Ub or longer, as well as the lateral coordinate and
position of equal phase relative to the surface wave. (The flat cases were averaged
over the lateral and streamwise coordinates.) The velocity scale used here is given by
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Figure 2. Time-history of integrated surface pressure force or form drag, defined by (19) for case
BHA1. The averaging period used to generate steady-state statistics is shown on the figure.

a bulk velocity that is independent of streamwise location:

Ub = (H − a)−1

∫ H

h

ū dz, (17)

where the overbar denotes averaging. Henceforth, it will be assumed that all velocities
are normalized with respect to Ub.

To check that the flow was sufficiently stationary for computing steady, long-time
averages, the time evolution of Ub and the total pressure and shear stress forces
at the walls were monitered. As an illustration, figure 2 shows the time history
of the integrated surface pressure force, defined in equation (19), for case BHA1.
High-frequency (period ≈ H/Ub) and low-frequency (period ≈ 20H/Ub) fluctuations
are apparent. Nonetheless, it is evident that a meaningful long-time average can be
defined over the averaging period shown on the figure.

All simulations were performed on a Windows NT workstation employing a DEC
Alpha 21164 300 MHz processor. For the standard BHA1 case (48× 48× 71 grid), a
single step takes about 7 cpu s. Thus, with a non-dimensional timestep of 8.6× 10−4,
the integration to a time of 75 took approximately 170 cpu h. By comparison, the flat
channel case F(48× 48× 90 grid) requires about 5.5 cpu s per step; with a timestep
of 3.7×10−3 and an integration time of 166, the total run time was about 69 cpu h.

It will be noted that the Reynolds numbers in table 1 do not match the experimental
values exactly. Since Px is held constant throughout the integration, the final bulk
velocity and, hence, Reynolds number cannot be controlled directly, but results from
the balance between wall stresses and imposed pressure gradient.

In presenting the LES results, the resolved turbulence fluctuations are defined as
u′′i u′′j where u′′i = ui − ui while the total fluctuations include the subgrid components,

u′iu′j = u′′i u′′j − τij . We also define the r.m.s. streamwise velocity fluctuations as σu =

(u′2)1/2, and similarly for v and w. Note that in presenting results for the flat channel
and small-amplitude wave, wall scaling is denoted by a superscript ‘+’, i.e. velocities

are normalized by u∗ =
(〈τ0〉)1/2

and heights by ν/u∗, where angle brackets indicate
averaging over a wavelength.
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Reference Measurements Re 2a/λ Observed features

Frederick & Mean and fluctuating 6 400 0.031 Linear shear stress response
Hanratty (1988) streamwise velocity

(LDV)
Hudson et al. Mean and fluctuating 3 380 0.100 Separated flow
(1996) streamwise and vertical

velocities, Reynolds
stress (LDV)

Zilker & Mean streamwise 29 300 0.05 Instantaneous reverse flow,
Hanratty (1979) velocity, wall pressure, nonlinear stress response.

wall shear stress (split- 14 730 0.125 Separated flow
film thermal probes, 30 000 0.125
pressure taps, electro- 30 530 0.200
chemical surface probes)

Buckles et al. Mean and fluctuating 12 300∗ 0.125 Separated flow
(1984, 1986) streamwise velocity, wall 10 700∗ 0.200

pressure (LDV and
pressure taps)

Table 2. Summary of relevant experiments of flow over wavy surfaces conducted in the laboratory
of Hanratty and coworkers. The measurement techniques are given in parentheses.

* These Reynolds numbers have been modified from their published values to conform with the
bulk velocity definition (17). See §6 for further discussion.

3.2. Laboratory experiments

As mentioned in the introduction, Hanratty and coworkers at the University of Illinois
have presented an extensive set of measurements of channel flow over wavy surfaces;
those referred to in this paper are summarized in table 2. The experiments cover a
wide range of slopes and Reynolds numbers since the nature of the flow depends
strongly on these parameters, as illustrated in the flow regime map presented by
Kuzan et al. (1989). We have concentrated on experiments with Re ≈ 104 where the
mean flow separates for 2a/λ somewhat greater than 0.05.

All experiments were conducted in a rectangular water channel with a cross-section
of 5.08×61 cm2. A long flat section preceded a sinusoidal wavetrain machined into the
lower channel wall such that the mean cross-section was unchanged. The flat section
was long enough that the flow was fully turbulent before encountering the first wave
and the channel wide enough for the mean flow to be essentially two-dimensional.
Spatially periodic flow was established fairly rapidly; measurements were typically
taken over the eighth wave in a series of 10. (The measurements of Hudson et al.
(1996) were taken over the 31st of 36 waves.)

4. Flat channel
We first present results for a flat channel at Re ≈ 12 000 with no-slip boundary

conditions at both walls, similar to the LES study of Moin & Kim (1982). Figure 3
shows the mean streamwise velocity profiles for cases F and FR compared with
the data of Hussain & Reynolds (1970). The calculated profiles are in reasonable
agreement with the data, with only a slight underprediction evident in the outer part
of the wall layer (z+ ≈ 10 to 30). The profiles show very little sensitivity to resolution,
an indication of numerical convergence. LES profiles from only the lower wall are
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Figure 3. Mean velocity profile for flat channel cases compared with experimental data: ——,
standard resolution case F; − − −, higher resolution case FR; ◦, measurement of Hussain &
Reynolds (1970). Re = 3 800.
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Figure 4. Turbulence intensities for cases F and FR compared with experimental data: ——,
total fluctuations; −−−, resolved components. The high resolution case FR is shown with bolder
lines. (a) Streamwise turbulence intensity, (b) transverse turbulence intensity, (c) vertical turbulence
intensity.

plotted, but those from the upper wall are virtually indistinguishable, an indication
of adequate statistical averaging.

Figure 4 shows profiles of the turbulence intensities, resolved and total, in the
vicinity of the wall whereas figure 5 shows the profiles over the lower half of the
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Figure 5. As figure 4, but height above wall scaled by channel half-depth. (a) Streamwise
turbulence intensity, (b) transverse turbulence intensity, (c) vertical turbulence intensity.

channel. The peak values near the wall match the experiments well, as do the values
in the middle of the channel. The streamwise intensity is somewhat overpredicted for
z+ ≈ 20 to 80, since the LES shows a more gradual fall off from the near-wall peak.
It is evident that the vertical intensity prediction is determined principally by the
subgrid model near the wall; τ33 increases too rapidly from the wall but nonetheless
shows good agreement overall. It can be seen that the resolved components increase
as the subgrid filter scale is reduced but the total intensities are not significantly
changed, indicating an appropriate transfer of energy from the subgrid to the resolved
component as resolution is increased. The agreement with the experimental data is
comparable to the LES of Moin & Kim (1982).

5. Small-amplitude wavy surface
Before presenting results for the large-amplitude wave, we simulate flow over a

small-amplitude wave that tests the coordinate transformation while still yielding
results close to the flat channel. This flow is of interest in its own right, so we will
compare with experimental and theoretical results. This will enable us to examine the
model predictions without the complicating effects of separation.

5.1. Mean velocity

Results from cases S1 and S1R, with 2a/λ = 0.031, are compared with the measure-
ments of Frederick & Hanratty (1988). Figure 6 shows the wavelength-averaged mean
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Figure 6. Mean wavelength-averaged velocity profile for cases S1 and S1R (2a/λ = 0.031) compared
with experimental data. ——, standard resolution case S1; − − −, higher-resolution case S1R; ◦,
Frederick & Hanratty (1988), Re = 6400; •, Hussain & Reynolds (1970), Re = 13 800.

streamwise velocity. The LES results are averaged along lines of constant η while the
data are averaged along lines of constant height above the wave surface. For this
small slope, the difference between the two averaging definitions is negligible. The
predicted profiles are generally in close agreement with the measurements and the
two numerical resolutions result in nearly identical profiles. As with the comparison
shown in figure 3 for the flat channel, the LES profiles are somewhat low over the
approximate range 10 < z+ < 30, although the discrepancy is slightly less here. The
flat channel data of Hussain & Reynolds (1970) are also shown in the figure; it is
evident that the wavelength average matches these data quite closely, as would be
expected for linear perturbation at this small slope.

The velocity profiles at different locations along the wave are shown in figure 7.
Profiles are paired such that they should be symmetric around the wavelength average
(shown as a dashed line), assuming perfectly linear behaviour. The overall agreement
with the data is good, particularly above the viscous sublayer, z+ > 10. The largest
discrepancies occur near the surface of the upslope profiles at x/λ = 0.6 and 0.7, where
the measurements show greater flow acceleration. It seems that the LES predictions
in these cases show more linear behaviour, i.e. the paired LES profiles are more nearly
symmetric about the wavelength average than the experimental data.

In a study of flow over hills using second-order closure and mixing-length models,
Newley (1985) examines the streamwise velocity perturbation profile above the wave
crest and finds that the maximum can be expressed as

∆umax =
βu2

0(l0)

aku2
0(lm)

, (18)

where u0 is the unperturbed mean streamwise velocity, ak is the maximum slope,
wavenumber k = 2π/λ, lm is the height of the maximum perturbation above the crest,
l0 is an outer layer scale set to k−1 for periodic hills and β is an O(1) constant.
A fit to the second-order closure results gives β ≈ 1 (and β ≈ 0.8 for the mixing-
length model). The LES results, using the wavelength average velocity for u0, give
β = 1.5. This discrepancy partly reflects the fact that lm is higher with the LES model:
lm/λ = 0.013 compared with approximately 0.006 for Newley’s second-order closure
calculations for hills with similar slopes. Of course, Newley’s calculations are for
rough surfaces, so these results are not directly comparable, especially since lm is just
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Figure 7. Profiles of mean streamwise velocity at various locations along the surface wave compared
with data of Frederick & Hanratty (1988). For the downslope locations x/λ = 0.1 to 0.5, thin solid
lines are case S1, thin dashed lines are case S1R and open circles are the experimental data. For
the upslope locations x/λ = 0.6 to 1.0, thick solid lines are case S1, thick dashed lines are case S1R
and solid circles are the experimental data. The wavelength average from S1R is shown with the
long-dash, short-dash pattern. (The curves from the two LES cases are virtually indistinguishable.)

barely above the viscous sublayer. If we re-examine the data of figure 7 in terms of
the perturbation velocity near the surface, as is done in Frederick (1986), we see that
the prediction of lm matches the experiment quite well. As can be seen from figure 8,
the LES profiles at the wave crest and trough show good overall agreement with the
data, although the overprediction at x/λ = 0.5, z+ > 10 is more noticeable with the
linear scale. The maximum perturbations above the crest are only about 10 % higher
than the experimental values, indicating that the LES prediction of β is reasonably
consistent with the experimental data.

5.2. Turbulence intensity

Streamwise turbulence intensity measurements from Frederick (1986) are shown in
figure 9 along with the LES results. The predictions compare favourably overall
with the experiment in that the basic variations with location are reproduced. The
turbulence intensities generally are out of phase with the pressure gradients: a positive
(adverse) pressure gradient has a destabilizing effect and hence increases the velocity
fluctuations whereas the opposite is true for negative (favourable) pressure gradients.
Thus, the peak values increase from profiles at x/λ = 0.1 to 0.5 and decrease
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Figure 8. Profiles of mean streamwise velocity perturbation at the wave crest and trough.
——, case S1; −−−, case S1R; ◦, experimental data of Frederick (1986).
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Figure 10. Velocity variance perturbation from the wavelength average, normalized by u2∗, for case
S1R. (a) Streamwise component; contour interval is 0.4. (b) Vertical component; contour interval is
0.04. Dashed lines indicate negative values.

thereafter to x/λ = 1. The LES peak values match the measurements quite well
regarding both magnitude and location (typically around z+ ≈ 20). Near the wall,
the LES predictions are generally low and show greater differences between the
paired profiles. Away from the wall, z+ > 100, the LES also tends to underpredict
the fluctuation intensity. However, flat channel measurements from the same facility
(Frederick 1986) show 10–20 % greater centreline intensities than typically given in
the literature, e.g. Hussain & Reynolds (1975).

To relate the LES results to some of the theoretical models of flow over small-
amplitude waves (e.g. Sykes 1980; Newley 1986), we show the streamwise and vertical
velocity variance perturbation fields for the high-resolution case S1R in figure 10.
(The transverse component will be discussed in §9.) The streamwise component is
defined as ∆u′2 = u′2 − 〈u′2〉, with the vertical component defined similarly. There is
qualitative agreement with the closure model predictions: a distinct surface layer is
evident; the perturbations maximise above and are almost 180◦ out of phase with
the surface layer; the maximum positive streamwise perturbation occurs over the
trough while the largest negative perturbation occurs over the crest. A quantitative
comparison with the models is not meaningful owing to differences in the bottom
boundary conditions; the inner layers defined in Sykes (1980) and Belcher et al.
(1993) would both fall within the viscous sublayer of the LES, thus invalidating their
assumption of a log profile. It is interesting to note that ∆u′2 above the surface layer
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Figure 11. Fractions of velocity variances resolved by the LES: ——, standard resolution case S1;
−−−, higher-resolution case S1R. The lines labelled u are fractions for the streamwise component
(defined in the text); v and w denote the transverse and vertical components, respectively.

is out of phase with ∆w′2. Whereas the streamwise variance decreases over the wave
crest, the vertical variance increases there, a result not predicted by closure models or
rapid distortion theory but observed in measurements over hills (Belcher et al. 1993).
It should also be noted that the maximum in ∆u′2 is localized close to the surface
compared with ∆w′2. Thus, although the maximum magnitude of ∆u′2 is nearly ten
times greater than ∆w′2, it decays rapidly with height and so for the region η/λ > 0.1,
the perturbations are of comparable magnitude.

The results shown in figure 10 are determined to some extent by the subgrid model,
especially near the surface. Therefore, it is important to examine how much of the
total variances are explicitly resolved in the LES. The wavelength-averaged fractions
of resolved variances, defined as 〈u′′2〉/〈u′2〉 for the streamwise variance and similarly
for the transverse and vertical variances, are shown in figure 11 for cases S1 and S1R.
It can be seen that more than 90 % of the streamwise variance is explicitly resolved
over the entire domain for both numerical resolutions. In contrast, only 10 % of the
vertical variance is resolved very close to the surface in S1 while the minimum resolved
fraction of the transverse variance approaches 60 %. Higher resolution results in a
noticeable improvement: the minimum resolved fraction increases to 35% for the
vertical variance and 75% for the transverse component. In the standard resolution
case S1, all components are more than 80% resolved for η/λ > 0.1. This level of
resolution is achieved for η/λ > 0.05 with the higher-resolution of S1R. Thus, the
variance perturbations shown in figure 10 are essentially resolved above the surface
layer; the calculations within the surface layer must be viewed with some caution,
however.

5.3. Surface shear stress

Zilker (1976) presents surface wall stress data for this flow; a comparison with the
LES results is shown in figure 12. The model predictions are close to the measurements
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Figure 12. Non-dimensional shear stress distributions: ——, case S1; −−−, case S1R;
symbols are the data of Zilker (1976) from two adjacent waves.

in both phase and magnitude, although the experimental scatter suggests caution in
making any definitive conclusions. It is evident that the wall stress data show a phase
lead relative to the wave crest. Fitting the data with a two-harmonic Fourier series,
Frederick (1986) finds a phase of 51◦ for the dominant first harmonic. The LES shows
a slightly smaller phase shift of approximately 45◦. These results are consistent with
theoretical models (e.g. Sykes 1980; Hunt et al. 1988), and reflect the fact that the
maximum perturbation velocity near the surface is shifted upstream (Newley 1985).
The shear stress perturbation is not exactly symmetric: the increase just ahead of the
wave crest is of larger magnitude than the decrease that occurs just upwind of the
trough. Accordingly, the low-stress region around the trough is of somewhat greater
extent than the high-stress region.

6. Separated flow over a large-amplitude wavy surface
We now turn to the BHA configuration, 2a/λ = 0.2, that exhibited a large separated

region extending over most of the wave trough. There is some uncertainty in the
definition of the bulk velocity used in BHA. They give a definition that is a function
of position, which seems to be an unnecessary complication. On the other hand,
Buckles (1983) uses a bulk velocity with a normalizing depth equal to the minimum
channel depth, H − 2a, rather than the mean channel depth. That is also consistent
with integrals of the tabulated velocity profiles given in Buckles (1983) and used here
for comparison with the LES. Therefore, for this section only, we use a definition of
bulk velocity given by

Ub = (H − 2a)−1

∫ H

h

ū dz.

Note that using this definition gives a Reynolds number 12% higher than that
obtained with the bulk velocity definition (17). This discrepancy is reflected in the
Reynolds numbers given in tables 2 and 3.

6.1. Mean velocity and streamlines

Profiles of the mean streamwise velocity for the simulations BHA1 and BHA1R are
compared with the experimental data in figure 13. Clearly, both the measurements
and the LES show strongly separated flow. The predicted magnitude of the reversed
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Figure 13. Profiles of mean streamwise velocity at various locations along the surface wave
compared with the data of BHA. ——, LES case BHA1; − − −, case BHA1R; symbols are
measurements.

flow in the recirculation zone, roughly between x/λ = 0.1 and 0.7, tends to be slightly
greater than observed, but overall the profile variations along the wave are faithfully
reproduced. Some locations show an underprediction in the middle of the channel,
but this appears to be due to variations in the measurements. We note that the
profiles reported by BHA contain discrepancies of up to 3% in the integrated mass
flux, which is necessarily conserved in the LES.

Profiles at the crest, trough and two intermediate positions are shown on a log scale
in figure 14 to emphasize the near-surface region. The LES profiles (only BHA1R is
shown since BHA1 is very similar) are in reasonable agreement with the measured
data. In particular, they match well over the crest except for a slight underprediction
very close to the surface. Significant shear can be seen very close to the surface at
the crest. Above this, the velocity profile is nearly constant for a short while before
increasing to the channel centreline maximum. The LES overpredicts the reverse
flow in the trough, but shows better agreement on the up- and downslope locations.
Note that the LES profiles show slightly negative velocity at x/λ = 0.7 while the
measurements are slightly positive, indicative of a somewhat further downstream
reattachment point in the LES.

The mean streamwise velocity field and streamlines are shown in figure 15 for
BHA1R. (The results for BHA1 are similar.) The strong shear over the crests is
clearly shown, but it should also be noted that there is still significant shear centred
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more or less around the Ψ = 0 streamline. The recirculation zone, bounded by the
Ψ = 0 streamline and the wave surface, is somewhat deeper than that shown in BHA
(their figure 5); the bounding streamline has a maximum elevation approximately
90% of the wave height compared with 60% in BHA. Although the LES velocity
profiles agree well with the observations over the bulk of the recirculation zone, the
overprediction of the reverse flow near the surface results in the integral defining the
streamlines, namely,

Ψ =

∫ z

h

ūdz′,

going to zero at a greater height.
A detailed examination of the LES and experimental data shows some discrepancy

in the precise extent of the recirculation region. Separation (in the mean flow) occurs
at x/λ = 0.14 in the experiment compared with 0.06 for both BHA1 and BHA1R;
reattachment occurs at 0.69 in the experiment and at 0.73 and 0.75 for BHA1 and
BHA1R, respectively. Since the experimenters note that velocity measurements are
inaccurate very close to the surface (below z/λ ≈ 2.6×10−3 ), there is some uncertainty
in the precise locations of the mean separation and reattachment points. Nonetheless,
this discrepancy has little adverse effect on predicting the salient features of the mean
flow.

6.2. Intermittency and flow variability

It is suggested in BHA that the location of the zero mean streamwise velocity contour
corresponds closely with the locus of 50% instantaneous reverse flow, i.e. γ = 0.5
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Figure 15. Mean flow field statistics from case BHA1R. (a) Streamwise velocity, (b) streamlines.
Negative velocities and streamlines are shown as dashed lines. Also shown in (b) are the loci of
10% and 50% instantaneous reverse flow.

where the intermittency γ is defined as the fraction of time that u is positive. This is
clearly confirmed for the LES in figure 15, where the γ = 0.5 line originates very close
to the separation point and terminates very close to the point of reattachment, as in
BHA. The γ = 0.1 contour indicates that there is a significant fraction of reverse flow
at the top of the mean recirculation zone, i.e. at approximately the height of the wave
crests. The location of this line matches well that shown in BHA, although they note
that it falls surprisingly high above the recirculation zone. This is not the case with
the LES owing to its deeper recirculation zone.

The intermittency contours imply large variability in the flow associated with the
recirculation zone. Plots of instantaneous velocity fields, examples of which are shown
in figure 16, indicate that large-scale flow features are responsible for this variability.
Clearly, flow separation results in large-scale ‘flapping’ of the shear layer as well as
other complex behaviour. For example, the character of the flow is strikingly different
in each of the four troughs shown in figure 16. In one case, reverse flow fills most of
the ‘valley’ above the trough whereas, in another, reverse flow is confined to a shallow
region near the wave surface. In a third case, reverse flow seems to have been ejected
away from the surface. Finally, we see a number of small areas, typically on the
downslope, where the reverse flow appears to have separated so that there is forward
flow very near the surface. It is clear from these examples that the mean streamlines
are not at all representative of the instantaneous flow, but they do illustrate the region
where recirculating flow is likely to be observed.
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Figure 16. Two independent realizations of instantaneous velocity vectors (u, w) at y = 0 for case
BHA1R. Solid lines denote loci of u = 0. Every other grid point is shown. The maximum velocity
is approximately 1.4.

6.3. Higher-order statistics

The relative streamwise turbulent fluctuations are shown in figure 17, where it can
be seen that the LES results are in close agreement with the data. Only the total
fluctuation intensities are plotted since the subgrid components are almost negligible
everywhere. BHA1R profiles are in close agreement with those of the lower resolution
BHA1; there are slight differences in some details, but statistics for the two resolutions
differ by less than a few per cent.

The highest fluctuation intensities are associated with the free shear layer that
detaches from the surface at the separation point and is elevated above the separation
zone. The magnitude of this maximum intensity remains fairly constant over much of
the wave. A reduction is seen after the flow reattaches and speeds up as it approaches
the wave crest. These features can be seen more clearly in figure 18, where turbulence
intensity fields are shown for the three coordinate directions. The locus of maximum
streamwise intensity extends over most of the trough at a height equal roughly to
the maximum wave height, before elevating somewhat towards the crest. This locus
approximately coincides with the midpoint of the vertical shear region in the mean
velocity field (see figure 15a). The vertical extent of this free shear layer is evident
from the ‘elbows’ in the mean velocity profiles of figure 13, particularly for x/λ = 0.3
and 0.5. The magnitude of the maximum streamwise intensity increases rapidly from a
value of about 0.20 very close to the crest to around 0.25 a quarter of the wavelength
downstream.

As discussed in BHA, remnants of the free shear layer separating from the upstream
wave are manifested as an elevated (z/H ≈ 0.25 to 0.35) region of increased streamwise
turbulence intensity over the wave crest. It can be viewed simply as a continuation
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Figure 17. Profiles of mean streamwise turbulence intensity at various locations along the surface
wave compared with the data of BHA. ——, BHA1; −−−, BHA1R; symbols are measurements.
Total LES turbulence intensities are shown.

of the locus of maximum intensity mentioned above through a periodic domain.
However, this elevated maximum decays rapidly downstream of the crest.

A moderate increase in the vertical fluctuation intensity, σw , above the wave crest
may also be associated with the shear layer remnant. However, the maximum intensity
occurs over the trough and is probably related to the large-scale eddies responsible
for the variations of the separated flow, as illustrated in figure 16.

Unlike σu and σw , the transverse fluctuation intensity, σv , does not show any
particular feature associated with the free shear layer. However, there is a very
pronounced maximum near the surface on the wave upslope whose effects extend
over the downstream crest. This is a feature which seems characteristic of all wavy-
surface cases that we have examined. Since it is rather unexpected and, to our
knowledge, has not been observed experimentally, we will discuss it further in § 9.

The contour plots of streamwise and vertical turbulence intensities in figure 18
appear qualitatively similar to those shown in Hudson et al. (1996) for separated flow
over a smaller wave (2a/λ = 0.1) at a lower Reynolds number (Re = 3380). In fact, the
locations and even the magnitudes of the maximum observed intensities are reasonably
close to the LES predictions. Hudson et al. correlate the different locations of σu and
σw maxima with the different direct production terms (involving the Reynolds stresses
and mean velocity gradients). They also point out that the lag in vertical intensity
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Figure 18. Dimensionless mean flow statistics from case BHA1R. (a) Streamwise turbulence
intensity, σu, (b) transverse turbulence intensity, σv , (c) vertical turbulence intensity, σw , (d) Reynolds
stress −u′w′.

maximum relative to the streamwise intensity is consistent with the initial direct
production of streamwise fluctuation (through u′w′ ∂u/∂z and u′2 ∂u/∂x) and the
subsequent transfer of energy into vertical fluctuations via the pressure-strain term.

Hudson et al. also show contours of the Reynolds stress −u′w′, which again is in
qualitative agreement with the LES results shown in figure 18. It can be seen that the
elevation of the maximum Reynolds stress is very close to that of maximum σu and
is clearly associated with the separated shear layer. The negative values close to the
surface on the upslope are an artifact of the Cartesian coordinate system (Hudson
1993); they assume positive values if rotated into a boundary-layer or streamline
coordinate system.

Profiles of skewness and flatness of the streamwise velocity, defined as S = u′′3/σ3
u

and F = u′′4/σ4
u , respectively, are compared with the BHA data for x/λ = 0.3
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in figure 19. The agreement between the LES profiles and the measurements is
encouraging considering the difficulty in obtaining reliable higher-order statistics.
Away from the wall, the profiles do not differ greatly from those computed or
measured previously over a flat wall, e.g. Moin & Kim (1982). The midchannel
values of S ≈ −0.4 and F ≈ 3 are close to the flat channel values and result
from velocity fluctuations produced by slow-moving fluid arriving from the wall
region. However, the profiles clearly differ from flat channel flow near the wall. For
instance, S decreases from its maximum, which is associated with the elevated shear
layer, to a small negative value at the wall. In contrast, the flat channel profile of
skewness maximizes at the wall. This is also true for flatness. However, for the BHA
flow, F shows some rather complex behaviour close to the wall, particularly around
(z − h)/H ≈ 0.05. While not inconsistent with the measurements, it remains to be
seen if this is real or an artifact of the LES model. The LES profiles do show some
sensitivity to resolution, especially for F near the wall. This is not surprising since
only the resolved velocity fluctuations are considered.

Contour plots of skewness and flatness are shown in figure 20. It can be seen that
a region of high skewness occurs just downstream of the crest, reaching its maximum
around the separation point. The locus of the maximum skewness seems to follow
approximately along the middle of the recirculation zone. Large negative values of
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Figure 20. (a) Skewness; contour interval of 0.25. (b) Flatness; contour interval of 0.5.

skewness are seen very close to the wave surface over the region of reverse flow while
near-surface positive skewness seems to be associated with attached, forward-moving
fluid. Both observations are consistent with the view that velocity fluctuations near
the wall are caused by fast-moving fluid being mixed down from above. But, the
skewness is then necessarily negative in the reverse flow region. The region of high
flatness is closely correlated with the region of high skewness, suggesting that the
process of mixing faster-moving fluid to the wall is intermittent.

6.4. Surface pressure and shear stress

The final comparisons with BHA are of the pressure and shear stress on the wavy
surface. An accurate prediction of these quantities is clearly an important aspect of
LES since they determine the integrated forces on the wave, which is of interest in
aeronautics, oceanography, meteorology and other fields. Variations of the pressure
force with slope are discussed in §8; here we focus on the BHA configuration.

Figure 21 shows distributions of non-dimensional wall pressure pw and shear stress
τw compared with the experimentally measured distributions, where

pw =
(

1
2
U2
b

)−1
p|η=0, τw =

(
1
2
U2
b

)−1
τ0.

The pressure plots have been adjusted so that the LES and observations match at
the wave trough. It can be seen that both BHA1 and BHA1R predict the pressure
increase on the upslope quite well. However, the magnitude of the pressure trough at
the wave crest is under-predicted in both cases and some sensitivity to resolution is
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evident. The wall shear stress is generally well predicted although the phasing of the
peak stress lags somewhat compared to the experiment. Note that the experimental
surface shear stress was estimated by assuming a linear velocity profile from the
lowest measurement point to the wall and there is some uncertainty associated with
these measurements.

The total forces on the lower wall per unit area in the x-direction can be calculated
by integrating the curves in figure 21. Defining the non-dimensional pressure and
shear stress forces (per unit length) as

Fx = −2πa

λ

∫ 1

0

pw

(x
λ

)
sin
(

2π
x

λ

)
d
(x
λ

)
, (19)

Tx =

∫ 1

0

τw

(x
λ

)
d
(x
λ

)
, (20)

the experimental values are Fx = 0.0261 and Tx = 0.0028. This compares with
Fx = 0.0253 and 0.0265 for BHA1 and BHA1R, respectively; the corresponding
results for the shear stress are Tx = 0.0016 and 0.0014. The accurate prediction of
the pressure force, commonly called the form drag, is due almost entirely to the
fact that the pressure rise in figure 21 matches the data well. The under-prediction
of the pressure trough is not critical to the integrated force in the x-direction since
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Figure 22. Profiles of mean streamwise velocity for 3 slopes: ——, case BHA1 (2a/λ = 0.2);
−−−, case S3 (2a/λ = 0.1); −−−, case S2 (2a/λ = 0.05).

the local pressure force there acts vertically. However, the predicted shear stress
force is significantly lower than the experimental observations because the biggest
discrepancy occurs on the upslope (which is opposite to what we just noted for
the pressure distribution). This discrepancy stems from an underprediction of the
acceleration on the upslope and the resulting delayed flow reattachment. Although
the difficulty in measuring velocity close to the surface may be a factor in the
discrepancy, the magnitude of the shear stress component is small compared with
the pressure contribution, so the total drag force is reasonably well predicted by the
numerical simulation.

7. Variations with slope
The LES model has been used to examine the effects of varying wave slope.

Figure 22 shows mean streamwise velocity profiles for 2a/λ = 0.05, 0.10 and 0.20
(cases S2, S3 and BHA1 in table 1). It is evident that the mean flow separates for
2a/λ = 0.1 but the 0.05 case is marginal in this regard. Other profile locations (not
shown) between x/λ = 0.3 and 0.5 reveal that case S2 does show a very small region
of flow separation. This finding is consistent with the flow regime map of Kuzan &
Hanratty (1989), which also indicates that the higher slope cases will show clearly
separated mean flow. The depth of the shear region above the trough clearly scales
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Figure 23. Profiles of mean streamwise turbulence intensity for cases BHA1, S3 and S2.
Line patterns as in figure 22.

with the wave amplitude. This is also true for the height of maximum streamwise
turbulence intensity, shown in figure 23. The turbulence intensity increases almost
linearly with slope, especially away from the wave surface.

Figure 24 shows the variation in surface pressure and shear stress with wave slope.
The pressure curves show a definite change in character as slope increases. The
small-amplitude wave produces a smooth, slightly asymmetric, curve that is similar
to the one shown in Zilker & Hanratty (1979) for this slope, but with a somewhat
smaller peak. However, there may be some Reynolds-number effect given that the
measurements by Zilker & Hanratty are for Re = 30 000. As slope increases, a
nearly constant pressure region over the separated flow becomes more pronounced.
The shape of the 2a/λ = 0.2 curve is similar to that in Zilker & Hanratty (as
well as BHA), but apparently the LES significantly underpredicts the total pressure
perturbation (peak-to-trough). (As we saw above, the 2a/λ = 0.2 case shows good
overall agreement with the data of BHA if the predictions and observations are
matched in the region of uniform pressure at the trough.) A comparison of the
2a/λ = 0.1 case with the 2a/λ = 0.125 data in Zilker & Hanratty also reveals an
underprediction of the pressure perturbation. In this case, though, the curves are also
qualitatively different. As noted above, the LES curve shows evidence of separation
by a relatively flat section. However, although Zilker & Hanratty observed separation
at this slope, their pressure data do not show a similar feature.
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Figure 24. Non-dimensional wall pressure and surface shear stress distributions for cases BHA1,
S3 and S2. Line patterns as in figure 22.

The surface shear stress curves shown in figure 24(b) clearly illustrate the regions
of separated or stagnant flow for the three slopes. The shear stress for 2a/λ = 0.05
is nearly symmetric (implying very little contribution to the increase in total surface
force) and becomes slightly negative approximately from x/λ = 0.2 to 0.5. In light
of the velocity profiles in figure 22, it is evident that the flow here is only weakly
separated and is probably better characterized as stagnant. The region of negative
shear stress clearly increases with slope, as does the magnitude of the negative stress.
The local maximum that both 2a/λ = 0.1 and 0.2 cases exhibit around x/λ = 0.3 is
rather surprising, but results from a small reduction in the magnitude of the reverse
flow there. Since measurements of surface shear stress are somewhat unreliable, we
cannot ascertain if this feature is realistic. Because the reattachment point (the second
zero stress crossing) moves downstream with increasing slope, the subsequent rate of
increase in shear stress tends to be greater, although the location of the maximum
also tends to move downstream slightly.

The pressure curves in figure 24(a) certainly show significant variations with slope.
However, probably of greater interest than the curves themselves is the resulting
integrated force on the wave surface, especially as a function of slope. This is
examined in the next section.
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Figure 25. Form drag vs. wave slope as given in table 3: ◦, data of Zilker & Hanratty (1979); •,
integration of Zilker & Hanratty pressure data; �, data of BHA; �, integration of BHA pressure
data; ∆, integration of LES surface pressure. Dashed line is proportional to (ak)2.

8. Form drag calculations
In this section, we present LES calculations of form drag for a number of wave

slopes; see table 1 for a summary of cases. These calculations include some variations
with resolution and Reynolds number since the results may be somewhat contro-
versial and we want to establish the sensitivity and consistency of the numerical
calculations.

Figure 25 shows the variations in form drag as a function of slope. In comparing
with the data of Zilker & Hanratty, as is done in Belcher et al. (1993) and Gong et
al. (1996), we found that the LES form drag predictions were approximately twice
as large as the reported values. However, we checked the Zilker & Hanratty results
by integrating the corresponding pressure curves as presented in their paper. As seen
from table 3, the numerically integrated forces are around twice the values stated
in Zilker & Hanratty and are reasonably consistent with the LES results as well as
the measurements of BHA. These calculations are shown in figure 25 as the solid
symbols. We have employed this method on the data of BHA and obtain very close
agreement with the reported form drag (within 6%). We also show the form drag
derived from the pressure data presented in Buckles et al. (1986) for 2a/λ = 0.125
(Re = 12 300), although they do not give their own calculated value. The form drag
in this case appears to be quite high, being roughly equal to the value for 2a/λ = 0.2,
although not that much higher than the numerically integrated Zilker & Hanratty
result for Re = 14 730. This suggests there may be some dramatic change in the
nature of the flow at this slope, possibly with some Reynolds-number dependence,
or it may point out some difficulties and uncertainties in the measurements. Note
that the measurements of Gong et al. are still in reasonable agreement with the
adjusted values of Zilker & Hanratty, particularly if the normalization in Gong et al.
is corrected for the fact that the centreline velocity is approximately 20% larger than
the bulk velocity. However, the predictions in Belcher et al. appear to be much lower
than the adjusted Zilker & Hanratty forces as well as those of BHA and the LES in
this study.

We have examined sensitivity to resolution, domain length and Reynolds number
for 2a/λ = 0.2. As can be seen from the figure and table 3, the form drag calculated
from the LES appears to be relatively insensitive in the range of Reynolds numbers
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Reference 2a/λ Re Fx λ−1

∫ λ

0

pw
dh

dx
dx′

Zilker & Hanratty (1979) 0.05 29 300 1.26×10−3 2.89× 10−3

0.125 14 730 1.155× 10−2 2.29× 10−2

0.125 30 000 1.003× 10−2 1.64× 10−2

0.20 30 530 1.37× 10−2 2.56× 10−2

Buckles et al. (1986) 0.125 12 300 — 3.08× 10−2

BHA 0.20 10 700 3.27× 10−2 3.46× 10−2

LES-S1 0.031 6560 — 1.24× 10−3

S1R 0.031 5720 — 1.31× 10−3

S2 0.05 11 050 — 2.90× 10−3

S3 0.10 10 580 — 1.29× 10−2

S4 0.125 10 800 — 1.70× 10−2

BHA1 0.20 10 600 — 3.16× 10−2

BHA1R 0.20 10 450 — 3.34× 10−2

BHA1L 0.20 12 000 — 3.21× 10−2

BHA2 0.20 5990 — 3.20× 10−2

BHA3 0.20 20 060 — 3.19× 10−2

Table 3. Form drag for various wave slopes and Reynolds numbers. Fx is the normalized form drag
given in the cited references; the last column is the form drag computed using published surface
pressure data (calculated by the present authors). Note that the values for BHA and Buckles et al.
(1986) are scaled by (H − a)2/(H − 2a)2 so they are consistent with Ub defined by (17).

considered. This is in contrast to Zilker & Hanratty, especially for the numerically
integrated pressure forces, although there is certainly some question as to the reliability
of these force results.

It should be pointed out that the LES results are subject to some uncertainty since
they depend entirely on modelling the flow near the surface where, as has been shown,
the explicit resolution of the turbulent motions is effectively reduced. However, the
effective resolution increases with slope since larger-scale motions are generated and
the form drag predictions are self-consistent in that a quadratic dependence on slope
is shown over a range of amplitudes, i.e. a good fit is given by

Fx = 0.12(ak)2.

This relationship appears to be valid up to around 2a/λ = 0.1; it starts to fall off
as slope and hence separation increases. This behaviour is consistent with theoretical
expectations, e.g. Wood & Mason (1993).

9. Increased transverse fluctuations
As shown in figure 18, the transverse fluctuations, v′2, show a marked increase on

the upslope close to the wave surface. In fact, the largest velocity fluctuations are
found in the lateral component, exceeding even the streamwise component maximum,
located in the separating shear layer. A similar feature has recently been reported
by De Angelis et al. (1997) and Cherukat et al. (1998) in their DNS studies of flow
over waves with smaller slopes, although not as pronounced as in figure 18. The
magnitude and limited spatial extent of the v′2 increase strongly suggests a localized
energy production mechanism associated with the wave slope and we, therefore,
investigate the lateral velocity fluctuations in more detail.
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Figure 26. Instantaneous velocity fields from BHA1R. (a) u-component and (b) v-component at
η/λ = 0.025. Contour interval is 0.1; dashed lines indicate negative values. (c) Secondary flow at
x/λ = 0.75. The vectors are interpolated onto a 48× 36 uniform grid. The maximum velocity is 0.7.

An examination of instantaneous flow fields at η/λ = 0.025, such as that shown
in figure 26, indicates structures elongated in the streamwise direction; they are most
easily seen in the transverse velocity field. However, they do not resemble the streaks
seen in flat boundary layers: these are broader laterally and limited in streamwise
extent. These broad areas of coherent transverse velocity are also evident in a plot of
the secondary flow vectors at x/λ = 0.75, figure 26 (c). There are intense vortex-like
transverse motions close to the surface, but they do not seem to be clearly defined
closed circulations or streamwise rolls.

The velocity fluctuations associated with these intense transverse velocity regions
are strongly affected by the presence of the solid boundary, since they occur so close
to the wall. This is most probably the reason for the preferential manifestation of
the kinetic energy in the v-component, rather than equally amongst v and w. For
a streamwise vortex, an idealized reflective boundary condition at the wall reduces
the normal component of the velocity to zero and doubles the transverse velocity
component, giving strong enhancement of v′2 at the surface. The wall layer drag
reduces the velocity very close to the surface, but the large increase in v′2 on the lower
side of the vortex-like structures is clearly evident in the LES results.

The persistence of these structures is illustrated in figure 27, which shows the
transverse velocity component at x/λ = 0.75 and η/λ = 0.0125 as a function of
time and transverse position. Examples from BHA1 and the flat channel case F
are shown. It can be seen that the flat channel contours are rather isotropic in
appearance, indicating an intermittent flow structure that is not strongly correlated in
time or along the transverse direction. In contrast, the contours for the wavy channel
midway on the upslope show broad streaks of positive or negative velocity. Although
these features meander laterally and the magnitude of the v-velocity in the streak is
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Figure 27. Transverse velocity at fixed streamwise and vertical position as a function of lateral
position and time; (a) BHA1 at x/λ = 0.75 and η/λ = 0.0125, contour intervals are 0.1. (b) Case F
at z/H = 0.01, contour intervals are 0.05.

modulated over time, the identity of the structure is maintained throughout, providing
strong evidence of their stability.

Both De Angelis et al. (1997) and Cherukat et al. (1998) suggest that the transverse
velocity fluctuation increase is produced by the large-scale structures associated with
flow separation and reattachment. This is not necessarily the case. Although the v′2
maximum is localized near the reattachment point over the large-amplitude wave,
LES of flow over smaller wave slopes also show a similar feature on the wave upslope.
Figure 28 shows the transverse fluctuation intensities for the three waves considered
in §8. Note that the maximum on the upslope is present for all waves, including the
smallest slope that exhibits very weak separation. (The mean reattachment point in
that case is at x/λ = 0.5, well upstream of the v′2 maximum.)

Figure 29 shows the transverse variance perturbation for case S1R, as was done
for the streamwise and vertical components in figure 10. It can be seen that for
a small-amplitude wave, a noticeable increase in ∆v′2 on the upslope is evident,
but it is accompanied by an almost equal decrease on the downslope. (However,
an examination of the larger-amplitude waves reveals that this near anti-symmetry
breaks down as slope increases so that the magnitude of the upslope (positive)
perturbation becomes much larger than the magnitude of the downslope (negative)
perturbation.) In contrast to figure 10, there is little qualitative agreement with closure
model predictions.

The perturbation maximum in figure 29 is close to the surface and thus is influenced
by the subgrid model, but figure 11 shows that at least 75% of the transverse variance
is resolved at that location. Also, the fraction of resolved variance increases with slope
(not shown), so results should be more reliable for the larger-amplitude cases.
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Figure 28. Transverse fluctuation intensity, σv , for three wave slopes. (a) BHA1, (b) S3, (c) S2.
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Figure 29. Transverse velocity variance perturbation from the wavelength average, normalized by
u2∗, for case S1R. Contour interval is 0.1. Dashed lines indicate negative values.

The results shown in figure 28 indicate that v′2 increases with wave steepness. To
quantify this, we examine the normalized maximum perturbations for the streamwise
and transverse variances as functions of wave slope, given in table 4. In can be seen
that ∆u′2 scales closely with slope for small-amplitude waves, in accord with linear
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LES case ak ∆u′2/ak ∆v′2/(ak)2

S1 0.098 7.70× 10−2 2.41× 10−1

S1R 0.098 8.43× 10−2 2.50× 10−1

S2 0.157 7.91× 10−2 1.93× 10−1

S3 0.314 9.13× 10−2 2.64× 10−1

S4 0.393 8.18× 10−2 1.86× 10−1

BHA1 0.628 8.67× 10−2 1.69× 10−1

BHA1R 0.628 6.47× 10−2 1.34× 10−1

BHA1L 0.628 9.55× 10−2 1.81× 10−1

Table 4. Maximum variance perturbations for LES cases defined in table 1. The streamwise
perturbations are normalized by the wave slope ak; the transverse perturbations are normalized by
the square of the wave slope.

theories (Sykes 1980). However, the ∆v′2 increases suggest a quadratic dependence on
slope, with a fall off at larger slopes similar to the form drag.

Examination of the conservation equation for v′2 shows that, since there are no mean
gradients in the lateral direction, direct production terms are zero and the transverse

velocity fluctuations must be driven by the pressure-strain term, p′∂v′/∂y, as pointed
out by De Angelis et al. (1997). It is well-known that pressure-strain terms redistribute
energy from one component to another and this is clearly the case with v′2; energy
from the streamwise and/or vertical components is extracted through the correlation
between pressure perturbations and transverse velocity gradients. The proximity of
the wall is certainly a factor, as mentioned above, but the basic mechanism that
gives rise to this correlation is unknown. It may be due to amplification of some
flow instability, but it is not related to the large-scale shear instability described in
Phillips, Wu & Lumley (1996) and possibly observed in the experiments of Gong et
al. (1996), since that mechanism has a streamwise scale greater than the wavelength.
The increased v′2 we observe is much more limited in extent. A possible mechanism
is the Taylor–Görtler instability which produces streamwise vortices such as observed
in boundary-layer flow over a concave surface (e.g. Tani 1962; So & Mellor 1975;
Hoffman, Muck & Bradshaw 1985). The trough region presents a concave surface,
and we might therefore expect production of coherent streamwise vortices in the local
flow. However, the magnitude of the v′2 increase observed in the LES calculations
appears to be significantly larger than experimental observations in curved boundary-
layer flow, but this may be due to enhancement by the shear distortion in the
flow over the waves. Experimental flows have generally involved minimal streamwise
acceleration in an attempt to isolate the curvature mechanisms. In contrast, the
vorticity production in flow over waves occurs in a region of strong acceleration
and, hence, vortex stretching. Streamwise vorticity is therefore enhanced as the flow
accelerates toward the wave crest, increasing the v-velocity and also stabilizing any
existing vortices.

10. Conclusions
Large-eddy simulations of flow over a wavy surface have been presented and

compared with available experimental data at Reynolds numbers of about 104. The
viscous effects are only important close to the smooth wall, and the LES grid size
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normal to the wall is chosen to resolve the viscous sublayer. A range of wave
amplitudes has been studied, from small slopes with almost linear flow perturbations
up to steep waves with large-scale flow separation. Particular attention has been paid
to the large-amplitude wave experiment of BHA.

In spite of the fact that surface elevation variations are known to induce complex
distortion of the turbulence fields close to the surface, the moderate resolution of
the LES appears sufficient to capture many aspects of the experimental flow. This
is partially due to the fact that the streamwise velocity fluctuations, often the only
component measured in the laboratory, are relatively well resolved in the LES.
Nevertheless, the response of the mean flow and the streamwise velocity variance to
different wave amplitudes is accurately predicted even close to the surface.

Small-amplitude waves illustrate the nature of the perturbations, and confirm
the turbulence closure model predictions of an ‘inner layer’ structure between the
wall-layer and the outer flow on the scale of the horizontal wavelength. The LES
results show rapid variations in the velocity variances within a layer of about 5%
of the wavelength; this is generally consistent with closure theory predictions but
quantitative comparison is precluded by the log-layer assumption of the analytical
models.

At large amplitude, the flow is dominated by the separating shear layer which
generates large-scale eddies, allowing more of the turbulent energy to be resolved by
the LES. The predicted separation region is more extensive than in the experiment,
but the turbulent and mean flow fields are only sensitive to this discrepancy very close
to the wall. The predicted structure of the streamwise velocity fluctuations, including
the higher-order statistics of skewness and flatness, is consistent with the experimental
data.

A comparison of predicted form drag with experimental observations has pointed
out some uncertainties in the observations. In particular, in appears that the drag
coefficients reported in Zilker & Hanratty (1979) are inconsistent with their surface
pressure distributions. However, the form drag reported in BHA (which is consistent
with their surface pressure data) is close to the LES value. The LES results are
subject to uncertainty since resolution is effectively reduced near the surface, but they
are self-consistent in that the form drag shows a quadratic dependence on slope for
small-amplitude waves, as predicted by analytical models. A slight fall off with slope
is predicted for larger amplitudes, again consistent with expectations (e.g. Wood &
Mason 1993).

One of the most striking features of the numerical calculation is a dramatic
increase in lateral velocity variance in a very localized region close to the surface on
the upslope of the wave. This is a general feature of all our wavy surface simulations.
The increase apparently scales with the square of the slope, in contrast to the other
two velocity components, which scale linearly with slope for small-amplitude waves.
The eddies responsible for the high variance are persistent structures, elongated along
the upslope, with relatively large lateral scale. The lateral motions are driven by
pressure variations, constrained by the tangential plane of the wall, but the basic
mechanism for their generation is unclear. This phenomenon has been observed
in the DNS studies of De Angelis et al. (1997) and Cherukat et al. (1998), but,
as far as we are aware, not measured experimentally, and further investigation is
warranted.
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